Хранилища данных - статьи

       

Дополнительные факторы при оценке моделей


Не существует одного класса моделей или алгоритма, которые позволили бы в любом случае создать идеальную модель для всех приложений. В силу этого платформы добычи данных должны поддерживать несколько типов построения моделей и предоставлять дополнительные средства для обеспечения расширяемости моделей и взаимодействия между ними.

В некоторых случаях аналитикам может потребоваться уникальная корреляционная модель, которую не поддерживает платформа добычи данных. Для этого платформы добычи данных должны быть расширяемыми.

Многие коммерческие продукты создают модели для конкретных областей применения, но реальная база данных, на которой должна применяться такая модель, возможно, будет работать с другим сервером баз данных. Платформы добычи данных и серверы баз данных, таким образом, должны поддерживать взаимозаменяемость моделей.

Недавно рабочая группа Data Mining Group () предложила воспользоваться Predictive Model Markup Language, стандартом на базе XML, для обмена рядом популярных классов моделей прогнозирования. Идея состоит в том, чтобы любая база данных, поддерживающая этот язык, могла импортировать и применять любую описанную на нем модель.



Содержание раздела